To produce complete a complete traditional frequency table for gender:
fr_tab = df['Gender'].value_counts().reset_index()
fr_tab.columns = ['Gender', 'Frequency']
# To add percentage column
fr_tab['Percentage'] = (fr_tab['Frequency'] / fr_tab['Frequency'].sum()) * 100
print(fr_tab)
Pie Diagram
import matplotlib.pyplot as plt
freq_tab = df['Department'].value_counts().reset_index()
freq_tab.columns = ['Department', 'Frequency']
# To add a % column
freq_tab['Percentage'] = (freq_tab['Frequency'] / freq_tab['Frequency'].sum()) * 100
print(freq_tab)
plt.pie(freq_tab['Frequency'],
labels=freq_tab['Department'],
autopct='%1.1f%%',
startangle=90,
colors=['skyblue', 'lightcoral','black'])
plt.title("Department Distribution")
plt.show()
Statlearner
Statlearner